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Abstract 

Software is a key part of today’s increasingly complex safety 
systems. There are many techniques that are available to 
identify system hazards and hazardous software behaviour. 
An identified gap in these techniques is the analysis of 
decisions performed during design and development that can 
potentially increase the risk to safety of the system due to 
vulnerabilities introduced by the chosen solution. In this 
paper we propose a method to record and justify design 
decisions, identify the vulnerabilities of each design decision 
and recommend further targeted analysis and mitigation to 
control those vulnerabilities. 

1 Introduction 

Safety critical and safety related software systems are 
becoming ever more complex. An example of this is the civil 
aircraft industry where better architectural design allows 
development of a core product using a set of generic 
functional components that can be used for several aircraft 
types. Approaches such as Integrated Modular Avionics 
(IMA) and Fault Detection and Isolation (FDI) software also 
improve aircraft availability that enables operators to continue 
flying the aircraft with a number of faults until the next 
scheduled maintenance service. Such approaches however 
add layers of complexity to what are already complex systems 
that are difficult to understand and analyse with confidence. 
 
In this paper we first consider the sufficiency of current 
commonly used hazard analysis techniques in identifying 
hazardous behaviour and failure conditions in complex 
software systems. Based upon these findings we present a 
new additional method, Design Decision Vulnerability 
Analysis (DDVA). DDVA is a systematic method to record 
and justify design decisions based upon an assessment of the 
vulnerabilities they introduce into software, and the 
identification of further requirements and additional analysis 
that may need to be performed. DDVA is not a replacement 
for existing hazard analysis techniques, neither is it a full 
solution to the problem of analysing complex systems, but it 
is a method that fills an identified gap with existing 
techniques. It is also a method that can be used to assess 
where analysis using existing well proven techniques can be 
best targeted based upon design decisions and system 
vulnerabilities. 
 

This paper is structured as follows. Section 2 discusses 
sufficiency of existing techniques for analysing complex 
software. Section 3 describes the DDVA method. Section 4 
describes the application of DDVA in practice within industry 
on an active development that identified a potential 
vulnerability of a design decision. Section 5 provides the 
conclusion and discusses future work. 

2 Assessment of Existing Software Analysis 
Techniques 

To supplement the authors’ own experiences of analysing 
complex software systems, we applied a number of 
techniques to several publically reported incidents and 
accidents attributed to software [1]. In most cases the public 
formal accident reports, written by the relevant appointed 
accident boards, were used as the source data for the case 
studies because the investigators had access to the original 
design information, data and engineers. These incidents and 
accidents included complex systems such as Ariane 5, Mars 
Polar Lander (MPL), Hatch Nuclear Power Plant, Boeing 
777-200 and a Patriot Missile Defence System. The most 
commonly used analysis techniques including Functional 
Failure Analysis, Fault Tree Analysis, Event Tree Analysis 
and HAZOP were chosen. These were applied to assess if 
they would have been able to identify, during system 
development, the hazardous behaviour that resulted in the 
unsafe events.  
 
The loss of Ariane 5 was attributed to a defect with alignment 
function software that is used to measure horizontal velocity 
[2]. A decision had been made to re-use this software from 
Ariane 4 in Ariane 5. The performance of the two vehicles 
and the different alignment procedures used during and after 
launch are however different. The greater horizontal velocity 
value experienced due to the increased performance of Ariane 
5 caused a software exception within the re-used function 
ultimately resulting in catastrophic loss of the vehicle. 
 
The most plausible reason for the loss of the MPL was a 
premature shutdown of descent engines during the landing 
phase onto the surface of Mars [3]. There were many 
conflicting requirements imposed on the developers of the 
software functions used during the landing phase of the 
mission that led to decisions based on compromise. These 
decisions increased the vulnerability of the system to 
premature shut-down of the descent engines due to erroneous 
touch-down indications from the deployment of the landing 
legs from the stowed position at an un-survivable altitude. 
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The shutdown of the Hatch Nuclear Power Plant, although 
demonstrating correct fail-safe behaviour, was an expensive 
error [4]. It was due to the decision to connect a business 
computer network to the primary control system with no 
obvious assessment of the potential impact. The vulnerability 
of the power plant to unnecessary shut-down due to errors 
with a non-safety related system was increased and proven. 
 
An in-flight upset on a Boeing 777-200 was caused by the 
failure of the FDI system to correctly re-configure the set of 
accelerometers to use after a second sensor failure [5]. The 
first failure of an accelerometer had occurred four years 
previously and this sensor was correctly isolated as part of the 
fault masking design, but following the failure of a second 
accelerometer the re-configuration allowed the previously 
failed accelerometer back into the sensor chain. One of the 
causes was the failure of the FDI system to read the sensor 
health status following a power off/on cycle. The failed re-
introduced sensor, along with a second latent software error 
that allowed the sensor input to be used without adequate 
validation checking, caused disengagement of the auto-pilot 
and simultaneous and conflicting over speed limit and stall 
alerts to the crew. The decision to use such a fault masking 
tactic made the system vulnerable to latent errors that 
triggered hazardous behaviour. 
 
The failure of the Patriot system to track, identify and 
intercept the Scud missile that hit a US Army barracks killing 
28 soldiers and injuring 98 was due to a software problem in 
the Weapon Control Computer [6]. The method used to 
measure time caused inaccuracies in the target tracking 
function that increased over time since the system was last 
reset. The system was originally “mobile” that was frequently 
reset or power cycled and was very effective. The decision to 
make it a static “permanent” form of protection for this 
installation increased the length of time that the system was 
likely to be operational between power cycles such that the 
error became large enough that Scud missiles were no longer 
identified and were not intercepted. 
 
Our case studies concluded that current techniques are 
adequate for hazard analysis of complex systems although 
there is some room for improvement. The main gap identified 
by the case studies was that design decisions are not 
adequately recorded or justified and the impact and 
vulnerabilities that they may introduce that can cause 
hazardous behaviour, are often not analysed.  The accident 
reports studied often cited the lack of analysis and 
justification of design decisions as a cause that in some cases 
directly contributed to the incident or accident. Critical design 
decisions had been taken, but there was no record of why 
those decisions were taken or if the vulnerabilities were 
considered. 

3 The Design Decision Vulnerability Analysis 
Method 

DDVA provides a method to record and justify design 
decisions. For each design decision the vulnerabilities are 

identified and assessed and the results recorded. The 
assessment of each vulnerability may identify that further 
controls or mitigation are needed. These new requirements 
are recorded. It may not be possible to immediately identify 
new requirements or mitigations because further detailed 
analysis is required. Such additional analysis should also be 
recorded as an action for a further activity. The output of the 
DDVA process is a living log or table of design decisions that 
record the iterative identification of vulnerabilities, their 
analysis and derivation of requirements, mitigations and or 
actions. The output of the process is a table that has the 
following columns: 
 
Design decision: A design decision is an informed choice 
made from an analysis of available solutions that is required 
to enable system design to progress to the next stage of 
development. 
 
The process of requirements analysis and hazard analysis is 
likely to identify conflicting requirements and these have to 
be resolved before moving onto the architectural design 
phase. Decisions to select the tactics and design patterns to 
use will be required at the architectural design phase. Only 
when this is complete can the detailed design progress where 
further lower level decisions will be required including choice 
of software language, operating system and software design 
methodology. This method is not generally intended to record 
the decisions made at the implementation level because there 
will be too many of these performed on a daily basis during 
production of the code that would make the recording process 
too onerous. However if such decisions do have 
vulnerabilities that could impact previous analysis or, a 
general policy decision is required to ensure consistency with 
the handling of, for instance, divide by zero conditions or 
software exceptions or errors, then these should be recorded. 
 
Justification of design decision: The rationale behind the 
design decision. This should be a summary and does not need 
to list the options that were assessed before the final design 
decision was made. In a safety case it is such justifications 
that should be challenged, therefore this has to be considered 
when providing the rationale. A reference to the outputs of 
other methods used should be provided if appropriate. 
 
Vulnerabilities: The design decision may increase the 
vulnerability of the system to threats or hazards. The decision 
may also impact and reduce the effectiveness of mitigations 
identified by previous analysis. In assessing potential 
vulnerabilities the impact of the design decision on system 
function, data flow, concepts of execution, use of resources, 
timing, performance, architectural modularity, partitioning, 
compatibility and re-use should all be considered. The 
vulnerabilities are therefore not necessarily failure modes or 
failure conditions but may be a side effect of the design 
decision. The vulnerabilities are a potential trigger for further 
hazard analysis. Every vulnerability for the design decision 
should be listed and assessed. 
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Additional requirement(s) or justification if none: For each 
vulnerability all additional requirements or mitigations that 
can reduce its risk should be identified. Assumptions should 
also be included. The principles of As Low As Reasonably 
Practicable (ALARP) should be considered. It is possible that 
there are no practicable mitigations for the identified 
vulnerability. This should be stated here and justified. 
Justification may mean an action to assess any increased 
residual risk to the system. 
 
It may not be possible to complete this until additional 
analysis and further design decisions have been performed. 
 
Actions: This column is used to identify further activities or 
analysis that may be required including the verification of 
assumptions identified. Actions may include the 
recommendation to perform specific hazard analysis 
techniques to parts of the system or to review and update 
previously performed analysis.  
 
The tabular output of the method, described above, should 
record all design decisions made during the life-cycle of a 
product. The table or log would grow as development 
progressed. Like a hazard log it can be updated throughout 
the life-cycle of the product and should also be 
understandable to all stakeholders. Following the DDVA 
process would ensure the history and reasoning behind the 
design decisions and mitigating requirements would not be 
lost. Re-use of software that has been subject to DDVA 
enables the vulnerabilities to be assessed prior to their re-use 
because the rationale can be challenged by the attributes of 
the new system. It can therefore be used as evidence in safety 
arguments that the re-use of components has been analysed. It 
provides the story of how the design was derived and will 
answer many questions raised towards the end of a project 
such as “why was it done that way?”. 

4 Practical Examples of using DDVA 

This section provides examples of the use of the method to 
analyse design decisions that would have been required for 
the Boeing 777 and Ariane 5 case studies and a practical 
example from current aircraft development. The method 
would have been equally useful in analysing the design 
decision to connect a business system to the primary control 
system of the Hatch Nuclear Power Plant, the Patriot system 
for its chosen method of measuring of time and change in 
operational requirement and to analyse the use of leg sensors 
known to produce erroneous touch-down indications on the 
MPL.  
 
The design decision relevant to the Boeing 777 incident was 
how to manage and record a failed sensor or component for 
potentially a long period of time until a scheduled 
maintenance activity. An example of using DDVA to record 
and analyse the vulnerabilities of this design decision is 
provided in Table 1. This example demonstrates that 
concentrating on a specific design decision allows better 
assessment of the vulnerabilities of that decision. In this case 

power cycling or equipment updates could cause a loss of 
sensor serviceability status, a cause of the Boeing 777 
incident. Table 1 also provides an example of how DDVA 
can be used to record new requirements to control or mitigate 
the vulnerabilities and also the recording of actions that 
identify further analysis that should be performed. Those 
actions should be managed to closure before the design 
decision can be ratified. Closure of actions can be recorded 
within the table by reference to the action activity output 
evidence. 
 
Ariane 5 had development cost and schedule pressures and so 
the re-use of software from a previous system was a design 
decision. Table 2 is the initial analysis of vulnerabilities of the 
decision to use the alignment function from Ariane 4. It 
demonstrates that in the early stages of development the 
method can be used to identify potential vulnerabilities of a 
specific decision and to recommend actions for further 
analysis. The additional requirements and mitigations are still 
to be defined in this example and, after completion of the 
actions, these can be identified and the justification for the 
design decision improved. An outcome of this design decision 
may be that the amount of analysis required, potential 
additional mitigations impacting other existing or new 
software that interface to the alignment function and lack of 
credible service history may need more effort than writing a 
new alignment function. 
 
These two examples of using DDVA are based on case 
studies of reported incidents and accidents where the causes 
were known and well reported. We recognised that the 
DDVA should also be evaluated on a current development to 
ensure that it adds value in practice.  
 
The system used for this evaluation is a Flight Program 
function for an Unmanned Air Vehicle (UAV) that was in 
development during the evaluation of DDVA and is now in-
service. The Flight Program function compares the current 
position of the UAV against that required by a flight plan, 
defined by a set of way-points, and determines corrective 
commands for the flight surfaces via actuators to ensure that 
the vehicle follows the flight plan. The Flight Program is 
executed by a Real Time Operating System (RTOS) via an 
infrastructure layer. This layer provides independence 
between the Flight Program and the hardware. 
 
The RTOS includes a Board Support Package (BSP) that 
boots-up the processor, starts the drivers and system features 
and starts the real time scheduler. However for this 
application the Flight Program requires a Transmission 
Control Protocol/Internet Protocol (TCP/IP) interface to 
enable it to communicate with other aircraft systems, an 
interface not provided by the certified RTOS chosen. A 
design decision was to use a certified version of the RTOS, 
that has the advantage of providing a deterministic reduced 
subset of the standard version, but required the addition of the 
interface for TCP/IP provided by drivers from the standard 
version of the RTOS. The effect of this is that the BSP needs 
modification to start the TCP/IP drivers on start-up.  
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A previous system level design decision for the overall flight 
control system is that it shall be deterministic. To achieve 
this, a requirement was defined that in the event of particular 
failures that cause software exceptions to be raised the 
processor shall be reset. Justification for this is that an 
exception is likely to be due to bad data and a reset will re-
start the Flight Program with fresh data. During the reset a 
reversionary function running on a different processor, with 
much reduced functionality than the Flight Program, takes 
over control until the Flight Program has re-started. This 
requires a quick start-up time so that the vehicle is in a 
reversionary mode for a short period of time. The BSP, as 
supplied, takes longer than the quick start-up time required 
and therefore needed further performance improvements in 
addition to the requirement to enable the TCP/IP drivers. 
 
Table 3 demonstrates the use of DDVA in evaluating the 
design decision to modify the BSP to include the TCP/IP 
drivers and reduce boot-up time. One of the vulnerabilities of 
this decision, shown in Table 3, is that too much could be 
removed from the BSP in achieving the target boot-up time 
leading to a loss of vital initialisation activity. In this case the 
original BSP requirements were poorly defined and the 
requirement to reset memory was missed. 
 
The three examples demonstrate the use of DDVA in order to 
identify vulnerabilities that are not just failure modes. Most 
design decisions are sensible and technically sound. However 
such decisions can introduce vulnerabilities. The stakeholders 
need to know the risk that is being taken due to design 
decisions, many of which will be a compromise between the 
available solutions. The use of the method challenges the 
design decision and therefore improves the final solution and 
ultimately the safety argument. DDVA, by identifying 
vulnerabilities rather than only failure modes, may even result 
in reversing or changing the original design decision. The 
DDVA method resolves the gap identified by the case studies 
following evaluation of the existing hazard analysis 
techniques. 

5 Conclusions and Future Work 

The conclusion of the case studies identified that the incidents 
were all due to the consequences of design decisions creating 
new hazards or undermining previous safety analysis and 
reducing the effectiveness of previous identified mitigation. 
In many cases design decisions made during development, a 
change in system functionality or operation, were not 
analysed for their potential impact to increase the 
vulnerability of the system to hazards. This paper has 
presented DDVA as a method to record design decisions, 
justify those decisions, to identify the vulnerabilities and to 
recommend further mitigation and/or hazard analysis.  
 
The paper demonstrates the use of DDVA on examples of 
reported incidents and accidents and a practical example 
performed during the development of a new aircraft. 
 

DDVA does not add complexity to the safety process because 
the recording of design decisions is already a requirement of 
most standards and is required evidence in safety cases. The 
method is an enabler of concentrating the mind of the analyst 
and integrating design decisions with safety analysis 
providing a safety case compliant method of recording the 
decisions, linking those decisions to analysis already 
performed and identifying where further analysis is required. 
Complex systems cannot be fully analysed but DDVA can be 
be used as an aid to better target further analysis. 
 
DDVA requires no specialist tools other than standard PC 
Microsoft Word or Excel type tools. The guidance on the use 
of the method does not require any specific training for those 
with an awareness of hazard analysis techniques. It is not 
dependent on specific system design, architectures or hazard 
analysis techniques but should be used in addition to those 
existing techniques. 
 
DDVA is considered to be suitable for other disciplines, not 
just software, and at all stages of system development. It is 
also considered to have potential for use in other non-safety 
related development such as security. 
 
DDVA is a new method and future work will include practice 
of its use at Thales UK for future projects. 
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Design Decision Justification of 
Design Decision 

Vulnerabilities Additional 
Requirement or 
Justification if None. 

Actions 

Sensors could exhibit 
erroneous or erratic 
failure conditions. 
Therefore when a 
sensor is detected as 
having failed it should 
be latched as failed 
and not used for the 
navigation solution 
until a maintenance 
activity resolves the 
failure. 
 

Latching a sensor as 
‘out of service’ 
ensures that 
erroneous or erratic 
failure behaviour of 
sensors are not used 
in the navigation 
solution to generate 
erroneous or erratic 
flight commands. 
Such erroneous 
behaviour could be 
due to the changing 
environment that an 
aircraft flies through 
and re-using a 
sensor with known 
erroneous or erratic 
behaviour is 
considered to 
unnecessarily 
increase risk of 
hazardous flight 
control. 
 
Vulnerabilities are 
mitigated by 
ensuring that the 
‘out of service’ data 
previously stored is 
checked for 
corruption before 
use. Further 
mitigation is 
provided by 
processes followed 
by the maintainer 
for resolution of 
sensor failures and 
software updates. 
 

Erroneous or erratic 
common mode failure 
that causes two or more 
sensor to fail will latch 
multiple sensors as ‘out 
of service’ and fail the 
Air Data Inertial 
Reference Unit 
(ADIRU). 

No further functional 
mitigation considered 
practicable. 
 
Assumption:  Redundant 
ADIRUs that cannot 
exhibit common mode 
failure. 

Perform common 
mode failure analysis 
for sensors. 
Verify assumption. 

ADIRU fails to read 
‘out of service’ sensor 
data. 
 

The ‘out of service’ 
sensor data shall be read 
by the ADIRU following 
a reset or power up. 
 

A facility for the 
maintainer to reset the 
sensor ‘out of service’ 
status is required. 
 

The ‘out of service’ 
sensor data is corrupted. 
 

The ‘out of service’ 
sensor data shall be 
protected by checksum. 
 
On reading the ‘out of 
service’ data the 
checksum calculated 
from the data shall be 
compared to the stored 
checksum and if they do 
not match the ADIRU 
shall be failed. 

 

Maintainer incorrectly 
resets ‘out of service’ 
status of failed sensor.  

No further functional 
mitigation considered 
practicable. 
 

Ensure that the 
maintainer process for 
diagnosing and 
resolving sensor 
failure is adequate. 

Software or hardware 
updates within ADIRU 
could cause ‘out of 
service’ data to be lost. 
  

Update of software shall 
not overwrite or corrupt 
‘out of service’ sensor 
data. 
 
Software shall be 
backward compatible 
with respect to recorded 
data on the ADIRU. 
 
Assumption: ADIRU 
software can be updated 
while installed in aircraft. 

System level design 
decision required to 
confirm assumption. 

 
Table 1 – Example of using the DDVA method as part of the Boeing 777 case study. 
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Design Decision Justification of 
Design Decision 

Vulnerabilities Additional 
Requirement or 
Justification if None. 

Actions 

Re-use alignment 
function from 
Ariane 4. 
 

Ariane 4 alignment 
function has good 
pedigree, service 
history and is a cost 
effective solution 
for Ariane 5. 
  

Ariane 5 has different 
behaviour including 
trajectory and 
performance. The 
alignment function 
may have 
incompatible data 
types and units. 

The alignment function 
shall adhere to the Ariane 
5 interfaces and 
parameter value ranges, 
precision, data type and 
units. 

Compare the interfaces and 
required data ranges and units 
between Ariane 4 and 5. 
 
Perform HAZOP for all data 
relating to the alignment 
function within the context of 
Ariane 5. 

Ariane 5 has different 
alignment procedure 
therefore scheduling 
of function may 
require changing. 

The alignment function 
shall not execute post 
launch. 
 

Compare the alignment 
procedures between Ariane 4 
and 5. 

Re-used software not 
compatible with 
target platform. 
 

The alignment function 
shall be rebuild using the 
target platform 
environment including 
operating system and 
compiler. 

Compare target platforms 
between Ariane 4 and 5 
including operating system 
and software compilers and 
versions of those items to 
ensure compatibility or 
identify updates required. 

Service history and 
pedigree are only 
relevant to Ariane 4 
and due to 
differences with 
Ariane 5 may not 
provide adequate re-
use safety argument 
in safety case. 

The re-used alignment 
function shall be reverse-
engineered to the Ariane 
5 development processes. 

The safety case is required to 
validate any claims of service 
history and pedigree by 
identifying the differences in 
execution environment 
between Ariane 4 and 5 to 
assess if argument is credible. 

 
Table 2 – Example of using the DDVA method as part of the Ariane 5 case study. 

 
Design Decision Justification of 

Design Decision 
Vulnerabilities Additional 

Requirement or 
Justification if None. 

Actions 

The BSP provided 
with Operating 
System requires 
modification to 
enable the TCP/IP 
driver and to reduce 
boot-up time. 

Boot-up is required 
to be completed in 
< 10 seconds. 
TCP/IP drivers 
require enabling on 
start-up. 
Modification of the 
BSP is lower risk 
than creating a new 
BSP.  

Too much is 
removed from BSP 
resulting in loss of 
initialisation, loss of 
RTOS features that 
are required and 
incomplete or non-
deterministic 
initialisation of 
resources and 
drivers. 

The BSP shall: 
Initialize the processor 
Initialize the bus 
Initialize the interrupt 
controller 
Initialize the clock 
Initialize the Random 
Access Memory (RAM) 
settings 
Reset RAM 
Enable TCP/IP driver 
Enable bus driver 
Enable timer driver 
Enable serial driver 
Enable non-volatile 
RAM driver 
Configure the segments 
Load and run bootloader 
from flash 

Perform analysis of what is 
the minimum required 
initialisation by the BSP. 
Use Functional Failure 
Analysis (FFA) for 
omission of function and 
HAZOP for loss or 
incorrect data flow. 

 
Table 3 – Example of using the DDVA method as part of the UAV Flight Program case study. 


