
1

Software Design Decision Vulnerability Analysis

P G Avery*, R D Hawkins †

* Thales UK, UK, email: phil.avery@uk.thalesgroup.com, †The University of York, UK, email: richard.hawkins@york.ac.uk

Keywords: software, safety, design, decision, analysis.

Abstract

Software is a key part of today’s increasingly complex safety
systems. There are many techniques that are available to
identify system hazards and hazardous software behaviour.
An identified gap in these techniques is the analysis of
decisions performed during design and development that can
potentially increase the risk to safety of the system due to
vulnerabilities introduced by the chosen solution. In this
paper we propose a method to record and justify design
decisions, identify the vulnerabilities of each design decision
and recommend further targeted analysis and mitigation to
control those vulnerabilities.

1 Introduction

Safety critical and safety related software systems are
becoming ever more complex. An example of this is the civil
aircraft industry where better architectural design allows
development of a core product using a set of generic
functional components that can be used for several aircraft
types. Approaches such as Integrated Modular Avionics
(IMA) and Fault Detection and Isolation (FDI) software also
improve aircraft availability that enables operators to continue
flying the aircraft with a number of faults until the next
scheduled maintenance service. Such approaches however
add layers of complexity to what are already complex systems
that are difficult to understand and analyse with confidence.

In this paper we first consider the sufficiency of current
commonly used hazard analysis techniques in identifying
hazardous behaviour and failure conditions in complex
software systems. Based upon these findings we present a
new additional method, Design Decision Vulnerability
Analysis (DDVA). DDVA is a systematic method to record
and justify design decisions based upon an assessment of the
vulnerabilities they introduce into software, and the
identification of further requirements and additional analysis
that may need to be performed. DDVA is not a replacement
for existing hazard analysis techniques, neither is it a full
solution to the problem of analysing complex systems, but it
is a method that fills an identified gap with existing
techniques. It is also a method that can be used to assess
where analysis using existing well proven techniques can be
best targeted based upon design decisions and system
vulnerabilities.

This paper is structured as follows. Section 2 discusses
sufficiency of existing techniques for analysing complex
software. Section 3 describes the DDVA method. Section 4
describes the application of DDVA in practice within industry
on an active development that identified a potential
vulnerability of a design decision. Section 5 provides the
conclusion and discusses future work.

2 Assessment of Existing Software Analysis
Techniques

To supplement the authors’ own experiences of analysing
complex software systems, we applied a number of
techniques to several publically reported incidents and
accidents attributed to software [1]. In most cases the public
formal accident reports, written by the relevant appointed
accident boards, were used as the source data for the case
studies because the investigators had access to the original
design information, data and engineers. These incidents and
accidents included complex systems such as Ariane 5, Mars
Polar Lander (MPL), Hatch Nuclear Power Plant, Boeing
777-200 and a Patriot Missile Defence System. The most
commonly used analysis techniques including Functional
Failure Analysis, Fault Tree Analysis, Event Tree Analysis
and HAZOP were chosen. These were applied to assess if
they would have been able to identify, during system
development, the hazardous behaviour that resulted in the
unsafe events.

The loss of Ariane 5 was attributed to a defect with alignment
function software that is used to measure horizontal velocity
[2]. A decision had been made to re-use this software from
Ariane 4 in Ariane 5. The performance of the two vehicles
and the different alignment procedures used during and after
launch are however different. The greater horizontal velocity
value experienced due to the increased performance of Ariane
5 caused a software exception within the re-used function
ultimately resulting in catastrophic loss of the vehicle.

The most plausible reason for the loss of the MPL was a
premature shutdown of descent engines during the landing
phase onto the surface of Mars [3]. There were many
conflicting requirements imposed on the developers of the
software functions used during the landing phase of the
mission that led to decisions based on compromise. These
decisions increased the vulnerability of the system to
premature shut-down of the descent engines due to erroneous
touch-down indications from the deployment of the landing
legs from the stowed position at an un-survivable altitude.

2

The shutdown of the Hatch Nuclear Power Plant, although
demonstrating correct fail-safe behaviour, was an expensive
error [4]. It was due to the decision to connect a business
computer network to the primary control system with no
obvious assessment of the potential impact. The vulnerability
of the power plant to unnecessary shut-down due to errors
with a non-safety related system was increased and proven.

An in-flight upset on a Boeing 777-200 was caused by the
failure of the FDI system to correctly re-configure the set of
accelerometers to use after a second sensor failure [5]. The
first failure of an accelerometer had occurred four years
previously and this sensor was correctly isolated as part of the
fault masking design, but following the failure of a second
accelerometer the re-configuration allowed the previously
failed accelerometer back into the sensor chain. One of the
causes was the failure of the FDI system to read the sensor
health status following a power off/on cycle. The failed re-
introduced sensor, along with a second latent software error
that allowed the sensor input to be used without adequate
validation checking, caused disengagement of the auto-pilot
and simultaneous and conflicting over speed limit and stall
alerts to the crew. The decision to use such a fault masking
tactic made the system vulnerable to latent errors that
triggered hazardous behaviour.

The failure of the Patriot system to track, identify and
intercept the Scud missile that hit a US Army barracks killing
28 soldiers and injuring 98 was due to a software problem in
the Weapon Control Computer [6]. The method used to
measure time caused inaccuracies in the target tracking
function that increased over time since the system was last
reset. The system was originally “mobile” that was frequently
reset or power cycled and was very effective. The decision to
make it a static “permanent” form of protection for this
installation increased the length of time that the system was
likely to be operational between power cycles such that the
error became large enough that Scud missiles were no longer
identified and were not intercepted.

Our case studies concluded that current techniques are
adequate for hazard analysis of complex systems although
there is some room for improvement. The main gap identified
by the case studies was that design decisions are not
adequately recorded or justified and the impact and
vulnerabilities that they may introduce that can cause
hazardous behaviour, are often not analysed. The accident
reports studied often cited the lack of analysis and
justification of design decisions as a cause that in some cases
directly contributed to the incident or accident. Critical design
decisions had been taken, but there was no record of why
those decisions were taken or if the vulnerabilities were
considered.

3 The Design Decision Vulnerability Analysis
Method

DDVA provides a method to record and justify design
decisions. For each design decision the vulnerabilities are

identified and assessed and the results recorded. The
assessment of each vulnerability may identify that further
controls or mitigation are needed. These new requirements
are recorded. It may not be possible to immediately identify
new requirements or mitigations because further detailed
analysis is required. Such additional analysis should also be
recorded as an action for a further activity. The output of the
DDVA process is a living log or table of design decisions that
record the iterative identification of vulnerabilities, their
analysis and derivation of requirements, mitigations and or
actions. The output of the process is a table that has the
following columns:

Design decision: A design decision is an informed choice
made from an analysis of available solutions that is required
to enable system design to progress to the next stage of
development.

The process of requirements analysis and hazard analysis is
likely to identify conflicting requirements and these have to
be resolved before moving onto the architectural design
phase. Decisions to select the tactics and design patterns to
use will be required at the architectural design phase. Only
when this is complete can the detailed design progress where
further lower level decisions will be required including choice
of software language, operating system and software design
methodology. This method is not generally intended to record
the decisions made at the implementation level because there
will be too many of these performed on a daily basis during
production of the code that would make the recording process
too onerous. However if such decisions do have
vulnerabilities that could impact previous analysis or, a
general policy decision is required to ensure consistency with
the handling of, for instance, divide by zero conditions or
software exceptions or errors, then these should be recorded.

Justification of design decision: The rationale behind the
design decision. This should be a summary and does not need
to list the options that were assessed before the final design
decision was made. In a safety case it is such justifications
that should be challenged, therefore this has to be considered
when providing the rationale. A reference to the outputs of
other methods used should be provided if appropriate.

Vulnerabilities: The design decision may increase the
vulnerability of the system to threats or hazards. The decision
may also impact and reduce the effectiveness of mitigations
identified by previous analysis. In assessing potential
vulnerabilities the impact of the design decision on system
function, data flow, concepts of execution, use of resources,
timing, performance, architectural modularity, partitioning,
compatibility and re-use should all be considered. The
vulnerabilities are therefore not necessarily failure modes or
failure conditions but may be a side effect of the design
decision. The vulnerabilities are a potential trigger for further
hazard analysis. Every vulnerability for the design decision
should be listed and assessed.

3

Additional requirement(s) or justification if none: For each
vulnerability all additional requirements or mitigations that
can reduce its risk should be identified. Assumptions should
also be included. The principles of As Low As Reasonably
Practicable (ALARP) should be considered. It is possible that
there are no practicable mitigations for the identified
vulnerability. This should be stated here and justified.
Justification may mean an action to assess any increased
residual risk to the system.

It may not be possible to complete this until additional
analysis and further design decisions have been performed.

Actions: This column is used to identify further activities or
analysis that may be required including the verification of
assumptions identified. Actions may include the
recommendation to perform specific hazard analysis
techniques to parts of the system or to review and update
previously performed analysis.

The tabular output of the method, described above, should
record all design decisions made during the life-cycle of a
product. The table or log would grow as development
progressed. Like a hazard log it can be updated throughout
the life-cycle of the product and should also be
understandable to all stakeholders. Following the DDVA
process would ensure the history and reasoning behind the
design decisions and mitigating requirements would not be
lost. Re-use of software that has been subject to DDVA
enables the vulnerabilities to be assessed prior to their re-use
because the rationale can be challenged by the attributes of
the new system. It can therefore be used as evidence in safety
arguments that the re-use of components has been analysed. It
provides the story of how the design was derived and will
answer many questions raised towards the end of a project
such as “why was it done that way?”.

4 Practical Examples of using DDVA

This section provides examples of the use of the method to
analyse design decisions that would have been required for
the Boeing 777 and Ariane 5 case studies and a practical
example from current aircraft development. The method
would have been equally useful in analysing the design
decision to connect a business system to the primary control
system of the Hatch Nuclear Power Plant, the Patriot system
for its chosen method of measuring of time and change in
operational requirement and to analyse the use of leg sensors
known to produce erroneous touch-down indications on the
MPL.

The design decision relevant to the Boeing 777 incident was
how to manage and record a failed sensor or component for
potentially a long period of time until a scheduled
maintenance activity. An example of using DDVA to record
and analyse the vulnerabilities of this design decision is
provided in Table 1. This example demonstrates that
concentrating on a specific design decision allows better
assessment of the vulnerabilities of that decision. In this case

power cycling or equipment updates could cause a loss of
sensor serviceability status, a cause of the Boeing 777
incident. Table 1 also provides an example of how DDVA
can be used to record new requirements to control or mitigate
the vulnerabilities and also the recording of actions that
identify further analysis that should be performed. Those
actions should be managed to closure before the design
decision can be ratified. Closure of actions can be recorded
within the table by reference to the action activity output
evidence.

Ariane 5 had development cost and schedule pressures and so
the re-use of software from a previous system was a design
decision. Table 2 is the initial analysis of vulnerabilities of the
decision to use the alignment function from Ariane 4. It
demonstrates that in the early stages of development the
method can be used to identify potential vulnerabilities of a
specific decision and to recommend actions for further
analysis. The additional requirements and mitigations are still
to be defined in this example and, after completion of the
actions, these can be identified and the justification for the
design decision improved. An outcome of this design decision
may be that the amount of analysis required, potential
additional mitigations impacting other existing or new
software that interface to the alignment function and lack of
credible service history may need more effort than writing a
new alignment function.

These two examples of using DDVA are based on case
studies of reported incidents and accidents where the causes
were known and well reported. We recognised that the
DDVA should also be evaluated on a current development to
ensure that it adds value in practice.

The system used for this evaluation is a Flight Program
function for an Unmanned Air Vehicle (UAV) that was in
development during the evaluation of DDVA and is now in-
service. The Flight Program function compares the current
position of the UAV against that required by a flight plan,
defined by a set of way-points, and determines corrective
commands for the flight surfaces via actuators to ensure that
the vehicle follows the flight plan. The Flight Program is
executed by a Real Time Operating System (RTOS) via an
infrastructure layer. This layer provides independence
between the Flight Program and the hardware.

The RTOS includes a Board Support Package (BSP) that
boots-up the processor, starts the drivers and system features
and starts the real time scheduler. However for this
application the Flight Program requires a Transmission
Control Protocol/Internet Protocol (TCP/IP) interface to
enable it to communicate with other aircraft systems, an
interface not provided by the certified RTOS chosen. A
design decision was to use a certified version of the RTOS,
that has the advantage of providing a deterministic reduced
subset of the standard version, but required the addition of the
interface for TCP/IP provided by drivers from the standard
version of the RTOS. The effect of this is that the BSP needs
modification to start the TCP/IP drivers on start-up.

4

A previous system level design decision for the overall flight
control system is that it shall be deterministic. To achieve
this, a requirement was defined that in the event of particular
failures that cause software exceptions to be raised the
processor shall be reset. Justification for this is that an
exception is likely to be due to bad data and a reset will re-
start the Flight Program with fresh data. During the reset a
reversionary function running on a different processor, with
much reduced functionality than the Flight Program, takes
over control until the Flight Program has re-started. This
requires a quick start-up time so that the vehicle is in a
reversionary mode for a short period of time. The BSP, as
supplied, takes longer than the quick start-up time required
and therefore needed further performance improvements in
addition to the requirement to enable the TCP/IP drivers.

Table 3 demonstrates the use of DDVA in evaluating the
design decision to modify the BSP to include the TCP/IP
drivers and reduce boot-up time. One of the vulnerabilities of
this decision, shown in Table 3, is that too much could be
removed from the BSP in achieving the target boot-up time
leading to a loss of vital initialisation activity. In this case the
original BSP requirements were poorly defined and the
requirement to reset memory was missed.

The three examples demonstrate the use of DDVA in order to
identify vulnerabilities that are not just failure modes. Most
design decisions are sensible and technically sound. However
such decisions can introduce vulnerabilities. The stakeholders
need to know the risk that is being taken due to design
decisions, many of which will be a compromise between the
available solutions. The use of the method challenges the
design decision and therefore improves the final solution and
ultimately the safety argument. DDVA, by identifying
vulnerabilities rather than only failure modes, may even result
in reversing or changing the original design decision. The
DDVA method resolves the gap identified by the case studies
following evaluation of the existing hazard analysis
techniques.

5 Conclusions and Future Work

The conclusion of the case studies identified that the incidents
were all due to the consequences of design decisions creating
new hazards or undermining previous safety analysis and
reducing the effectiveness of previous identified mitigation.
In many cases design decisions made during development, a
change in system functionality or operation, were not
analysed for their potential impact to increase the
vulnerability of the system to hazards. This paper has
presented DDVA as a method to record design decisions,
justify those decisions, to identify the vulnerabilities and to
recommend further mitigation and/or hazard analysis.

The paper demonstrates the use of DDVA on examples of
reported incidents and accidents and a practical example
performed during the development of a new aircraft.

DDVA does not add complexity to the safety process because
the recording of design decisions is already a requirement of
most standards and is required evidence in safety cases. The
method is an enabler of concentrating the mind of the analyst
and integrating design decisions with safety analysis
providing a safety case compliant method of recording the
decisions, linking those decisions to analysis already
performed and identifying where further analysis is required.
Complex systems cannot be fully analysed but DDVA can be
be used as an aid to better target further analysis.

DDVA requires no specialist tools other than standard PC
Microsoft Word or Excel type tools. The guidance on the use
of the method does not require any specific training for those
with an awareness of hazard analysis techniques. It is not
dependent on specific system design, architectures or hazard
analysis techniques but should be used in addition to those
existing techniques.

DDVA is considered to be suitable for other disciplines, not
just software, and at all stages of system development. It is
also considered to have potential for use in other non-safety
related development such as security.

DDVA is a new method and future work will include practice
of its use at Thales UK for future projects.

Acknowledgements

The authors acknowledge the support provided by Thales UK
and the University of York.

References

[1] Phil Avery, “Software Safety and Hazard Analysis
Techniques”, Project submitted for the MSc in Safety
Critical Systems Engineering, University of York,
September 2013.

[2] Prof. J.L.Lions, “Ariane 5 - Flight 501 Failure – Report
by the Inquiry Board”, European Space Agency.

[3] “Report on the Loss of the Mars Polar Lander and Deep
Space 2 Missions”, Jet Propulsion Laboratory (JPL)
Special Review Board, JPL, California Institute of
Technology. 22 March 2000.

[4] Brian Krebs (June 5, 2008), Cyber Incident Blamed for
Nuclear Power Plant Shutdown [On-Line], Washington
Post. Accessed on 05/07/2014. Available at
http://www.washingtonpost.com/wp-
dyn/content/article/2008/06/05/AR2008060501958.html

[5] Australian Transport Safety Bureau (ATSB) Transport
Safety Investigation Report, “In-flight upset event 240
km north-west of Perth, WA, Boeing Company 777-200,
9M-MRG, 1 August 2005”, Aviation Occurrence Report
200503722 – Final.

[6] The Honorable Howard Wolpe, Geneal Acounting
Office (GAO) Report on Patriot Missile Software
Problem, February 4 1992, Accessed on 05/07/2014.
Available at:
http://www.fas.org/spp/starwars/gao/im92026.htm

5

Design Decision Justification of
Design Decision

Vulnerabilities Additional
Requirement or
Justification if None.

Actions

Sensors could exhibit
erroneous or erratic
failure conditions.
Therefore when a
sensor is detected as
having failed it should
be latched as failed
and not used for the
navigation solution
until a maintenance
activity resolves the
failure.

Latching a sensor as
‘out of service’
ensures that
erroneous or erratic
failure behaviour of
sensors are not used
in the navigation
solution to generate
erroneous or erratic
flight commands.
Such erroneous
behaviour could be
due to the changing
environment that an
aircraft flies through
and re-using a
sensor with known
erroneous or erratic
behaviour is
considered to
unnecessarily
increase risk of
hazardous flight
control.

Vulnerabilities are
mitigated by
ensuring that the
‘out of service’ data
previously stored is
checked for
corruption before
use. Further
mitigation is
provided by
processes followed
by the maintainer
for resolution of
sensor failures and
software updates.

Erroneous or erratic
common mode failure
that causes two or more
sensor to fail will latch
multiple sensors as ‘out
of service’ and fail the
Air Data Inertial
Reference Unit
(ADIRU).

No further functional
mitigation considered
practicable.

Assumption: Redundant
ADIRUs that cannot
exhibit common mode
failure.

Perform common
mode failure analysis
for sensors.
Verify assumption.

ADIRU fails to read
‘out of service’ sensor
data.

The ‘out of service’
sensor data shall be read
by the ADIRU following
a reset or power up.

A facility for the
maintainer to reset the
sensor ‘out of service’
status is required.

The ‘out of service’
sensor data is corrupted.

The ‘out of service’
sensor data shall be
protected by checksum.

On reading the ‘out of
service’ data the
checksum calculated
from the data shall be
compared to the stored
checksum and if they do
not match the ADIRU
shall be failed.

Maintainer incorrectly
resets ‘out of service’
status of failed sensor.

No further functional
mitigation considered
practicable.

Ensure that the
maintainer process for
diagnosing and
resolving sensor
failure is adequate.

Software or hardware
updates within ADIRU
could cause ‘out of
service’ data to be lost.

Update of software shall
not overwrite or corrupt
‘out of service’ sensor
data.

Software shall be
backward compatible
with respect to recorded
data on the ADIRU.

Assumption: ADIRU
software can be updated
while installed in aircraft.

System level design
decision required to
confirm assumption.

Table 1 – Example of using the DDVA method as part of the Boeing 777 case study.

6

Design Decision Justification of
Design Decision

Vulnerabilities Additional
Requirement or
Justification if None.

Actions

Re-use alignment
function from
Ariane 4.

Ariane 4 alignment
function has good
pedigree, service
history and is a cost
effective solution
for Ariane 5.

Ariane 5 has different
behaviour including
trajectory and
performance. The
alignment function
may have
incompatible data
types and units.

The alignment function
shall adhere to the Ariane
5 interfaces and
parameter value ranges,
precision, data type and
units.

Compare the interfaces and
required data ranges and units
between Ariane 4 and 5.

Perform HAZOP for all data
relating to the alignment
function within the context of
Ariane 5.

Ariane 5 has different
alignment procedure
therefore scheduling
of function may
require changing.

The alignment function
shall not execute post
launch.

Compare the alignment
procedures between Ariane 4
and 5.

Re-used software not
compatible with
target platform.

The alignment function
shall be rebuild using the
target platform
environment including
operating system and
compiler.

Compare target platforms
between Ariane 4 and 5
including operating system
and software compilers and
versions of those items to
ensure compatibility or
identify updates required.

Service history and
pedigree are only
relevant to Ariane 4
and due to
differences with
Ariane 5 may not
provide adequate re-
use safety argument
in safety case.

The re-used alignment
function shall be reverse-
engineered to the Ariane
5 development processes.

The safety case is required to
validate any claims of service
history and pedigree by
identifying the differences in
execution environment
between Ariane 4 and 5 to
assess if argument is credible.

Table 2 – Example of using the DDVA method as part of the Ariane 5 case study.

Design Decision Justification of

Design Decision
Vulnerabilities Additional

Requirement or
Justification if None.

Actions

The BSP provided
with Operating
System requires
modification to
enable the TCP/IP
driver and to reduce
boot-up time.

Boot-up is required
to be completed in
< 10 seconds.
TCP/IP drivers
require enabling on
start-up.
Modification of the
BSP is lower risk
than creating a new
BSP.

Too much is
removed from BSP
resulting in loss of
initialisation, loss of
RTOS features that
are required and
incomplete or non-
deterministic
initialisation of
resources and
drivers.

The BSP shall:
Initialize the processor
Initialize the bus
Initialize the interrupt
controller
Initialize the clock
Initialize the Random
Access Memory (RAM)
settings
Reset RAM
Enable TCP/IP driver
Enable bus driver
Enable timer driver
Enable serial driver
Enable non-volatile
RAM driver
Configure the segments
Load and run bootloader
from flash

Perform analysis of what is
the minimum required
initialisation by the BSP.
Use Functional Failure
Analysis (FFA) for
omission of function and
HAZOP for loss or
incorrect data flow.

Table 3 – Example of using the DDVA method as part of the UAV Flight Program case study.

